Why is a gifted student having trouble with Rocket Math?

Question: Hi, Dr. Don! Just had a question recently from a parent of a gifted child whose son is having a lot of difficulty doing Rocket Math! He understands almost everything conceptually in math (in the 99% on national testing) but he is not being successful working with a partner on his math facts. Have you had this problem in other places? I’m not sure if the problem is he really can’t focus on the facts, he’s stubborn and doesn’t like details (big picture thinker), etc. He’s a very social kid so the partnering doesn’t seem to be the problem. I would greatly appreciate any suggestions you might have that I could give this mother. She says that he is fine at home doing his facts with her without a timer. But I don’t like the idea of excusing any student from doing this valuable practice. Thanks for your thoughts. Linda

Answer: I’ve blogged a bit on some of these issues elsewhere on the Rocket Math website, but let me try to be more specific here. First, gifted kids are stunned to find out that they have to work hard to memorize math facts. They probably need three or four days of practice—which to them seems like failure.  They are like an athletic kid who excels easily at every sport but finds he needs to work out with weights as much as a klutz to get to be able to lift heavy weights—his natural talent doesn’t help in this instance. So kids who’ve never had to work to learn things before, really are annoyed by having to practice several days in a row.  But it is really good for them!

How is mom practicing with him at home? Can she video him doing the test “untimed?”  If the child is “writing facts” and “without a timer” then he may be figuring out facts over and over—but is not getting to instant recall. That’s why the oral peer practice is so critical—if there is even a slight hesitation the child is to repeat the fact three times, back up three problems and come at it again—until the answer comes with no hesitation. There is a fundamental difference between instant recall of facts from memory and strategies to come to the answer by thinking it through. My parent letter addresses how to practice.  On the other hand, if the student is able to write the answers to math facts at a fast enough rate to complete 40 problems in a minute, but only when he thinks he is not being “timed” then he needs to learn how to do the same thing when he is being timed.

If he is not learning with the daily practice, we have to ask, “Why not?”  Social kids sometimes socialize instead of practicing. Social kids also can convince their partner not to do the correction procedure. Or they just say the answers instead of the whole problem and the answer. Any of those things would result in not successfully learning the facts. The teacher would need to monitor the quality of the practice. My experience has been that when students are “stuck” or “having difficulty” even just one session of practice done the right way rigorously (with me) and they suddenly improve enough to pass or to recognize they can pass the next day with another session of rigorous practice.

Last of all, sometimes the writing goals are off because of some glitch in how you gave the writing speed test.  So the student might know the facts well enough but not be able to write them fast enough to pass the tests.  If the student can answer 40 facts in a minute in the current set (just saying the answers without having to say the problems) then the facts are learned to automaticity—and the goal in writing should be lowered to whatever the student has done to this point.

Hope this helps. You are right not to excuse this student from learning math facts to automaticity. He might be a stellar mathematician someday if he learns his facts well enough that math computation is always easy for him. If math computation remains slow or laborious he won’t like it enough to pursue it as a career.

Without the directions you may get lost!

What happens when teachers don’t have a copy of the Rocket Math Teacher Directions?  Bad things!  

When teachers don’t have the written directions to Rocket Math, the essence of the program usually gets lost.  Procedures get modified and modified over the years until they are not even close to what should be occurring. Sometimes we have found schools that are not even providing daily oral practice.  Other schools don’t give the answer keys to the peer tutors.  Other schools don’t give the writing speed test and make up impossible-to-reach goals for students.  We often see teachers implementing the “Rocket Math” program incorrectly and wondering why it doesn’t work.  We ask them if they have read the teacher directions, and they say they didn’t know there were any.  When teachers have never seen the directions, is it any wonder they don’t know what they are supposed to be doing?  Hear-say directions handed down over the years from one teacher to another just don’t convey all the important details.  Teachers need the directions!

This is why I’d like you to have my complete directions for free. Even if you purchased Rocket Math ten years ago and haven’t gotten the updated versions since then, you can have these directions for free.  I have them in three places.  I have the directions broken out into FAQs on their own web page here.  That’s easy for quick reference.

The second place I have the Teacher Directions is as a downloadable booklet you can print out and distribute.  The Rocket Math Teacher Directions for the worksheet program booklet is here.   Please print this out and give to your teachers, especially in schools that began implementing several years back.  Read them and have a discussion at a professional development time.  You will be astounded at how much your implementation differs.

The third place I have the Teacher Directions is in the “filing cabinet on the web” for those of you who have the subscription. In the “Forms and Information” drawer we have the booklet and the FAQs which can be opened and printed out.

In school-wide implementations of Rocket Math, principals or math coaches need to take a leadership role.  The Administrator and Coach Handbook gives you forms with what to “look-for” in a Rocket Math implementation.  If you use that to observe Rocket Math in your classrooms you’ll quickly see whether or not things are going the way they should.   If you have a subscription to Rocket Math you’ll find all of the chapters of the Administrator and Coach Handbook in the “Forms and Information” drawer of our filing cabinet on the web.

Please take the time to see that you or your teachers are implementing Rocket Math according to the directions.  Trust me, it works SO MUCH BETTER if you do.  I wouldn’t steer you wrong!

 

Rush help to those who need it with an aimline

The sooner you provide extra help the easier it will be to catch them up.  

How can you know when students need help to meet expectations?  Use the graph above, which is available from the Educator’s Resources page or here: One Semester Aimline.  It is also available in the basic subscription site, Forms and Information Drawer as an optional form. It is an “aimline” for finishing an operation (Sets A-Z) in one semester.  Schools that don’t start Rocket Math in first grade need students to finish addition in the first semester of 2nd grade and subtraction in the second semester.  This means that students who get stuck on a level for even a week need to be helped.

If you indicate on this graph the week in which the student finishes each set in Rocket Math you can tell if the student is making enough progress, or if he/she needs to be getting extra practice sessions each day. If the student is working on a set above the line of gray boxes or on the line then progress is adequate–they are on track to finish the operation by the end of 18 weeks of the semester.  But if the student is working on a set that is below the line that means he/she needs intervention.

In the example above the student whose progress is shown in red is above the aimline.  That student has been passing at a rate that means he or she will finish the operation by completing Level Z by the end of the semester.  That student does not need any extra intervention.  In the example above the student in blue is falling behind.  By the fourth week that student has only passed Level C and so he needs to have extra help.

The first step would be to ensure this student has a good partner and is practicing the right way.  Sometimes students don’t stay on task or do not listen and correct their partner.  If hesitations are allowed (while the student figures out the answer) and not corrected the student will not improve.  Fix the practice in class first and see if the rate of passing improves and the student starts to get up to the aimline.

The second step is to include this student in a group of students who get a second practice session each day.  They would work in pairs and do another Rocket Math session each day.  Whether or not they take tests is unimportant.  What is important is that they do the oral practice with a partner who corrects their hesitations as well as their errors.  This could be done by a Title One teacher or assistant or a special education teacher or assistant.  It should only take ten minutes.

Another step is to involve parents if that’s possible.  Another practice session (or two) at home each evening would make a big difference.  Parents will need to know how to correct hesitations, but there’s a parent letter in the Forms and Information drawer for that.  Also note that siblings can do this practice as well, as long as they have an answer key.

You will be pleasantly surprised at how an extra few minutes a day of good quality practice can help students progress much faster at Rocket Math.  The sooner you intervene, the easier it will be for the student to catch up.

NOTE: There is an aimline for finishing one operation in a year.  It is also in the Forms and Information drawer and on the Educator’s Resources page of our website.  If you follow recommendations and do addition in first grade, subtraction in second, and multiplication in third you can use that aimline.  It won’t require intervening on so many students.

 

 

Developing test-taking strategies into habits.

Three important test-taking strategies that Rocket Math will turn into habits.

(1) Perseverance Pays Off

Students really need perseverance to get through today’s tests.  You want your students to really work hard and do their best! To have that kind of perseverance students need to KNOW that it pays off.  Sticking with learning and testing over and over until they win is a central lesson of Rocket Math’s daily practice and tests.  Most days, most students do NOT pass the One-Minute Daily Test.  They have to practice some more and try again the next day.  If they try hard and do their best on each day’s test, eventually they do pass.  This teaches perseverance like nothing else in the curriculum!

 

 

(2) When taking a test, work as fast as you can.  

Students doing Rocket Math learn that to be successful you have to work as fast as you can.  Their individualized goals require that they write answers as fast as they can write.  Students who pause to look at the clock or look around the room during the one-minute test simply do not pass.  This may be the only time of the day that students experience the need to work quickly and they get immediate feedback based on whether or not they do work quickly–and it is something they care about!  So they are motivated to work quickly.  It is important for students to have that kind of experience if they are to learn the general rule that you are supposed to work as fast as you can when taking a test.  

 

(3) Skip what you don’t know  

Have you ever watched a student waste valuable time working on a test item you knew the student wouldn’t be able to answer?  Nothing more painful.  Students need to learn to skip the items to which they don’t know the answer readily.  How are they going to learn that without practice?  Rocket Math has a progress-monitoring component–a weekly 2-minute timing you can see to the right. These weekly tests sample all the facts in the operation, including ones they haven’t memorized yet.  Therefore the strategy they should use is to skip the ones they don’t know yet, so as to answer quickly all the ones they do know.  If you explain this to the students, and they can develop this strategy while taking these weekly tests.   

If you aren’t sure that your implementation is developing these habits please feel free to download the  Teacher Directions.   If you have a school wide implementation of Rocket Math be sure you have the Administrator and Coach Handbook.

What about students who can’t pass in 6 tries?

A teacher writes:

Help! I’m feeling bogged down in Rocket Math. I have some students who have been working on the same sheet for over 10 times and are no closer to passing. What am I doing wrong?

Dr. Don answers:

The problem could be one of several things.  You have to diagnose what it could be.  I am assuming you have students practicing orally in pairs, with answer keys, for at least two minutes per partner every day (as shown in the picture above).  I am assuming you already have students, who do not pass, take home the sheet on which they didn’t pass and finish it as homework and practice with someone at home.  The extra practice session at home each day can be a big help and the students should be motivated to do that.   If this is the case and you still have a problem, below are two possible things that may be needed.

(#1) Need to improve practicing procedures.  Pick one of the students who is stuck and be that student’s partner while they practice orally.  Make sure they are saying the whole problem and the answer aloud so you can hear what they are saying.  Correct even any hesitations, not just errors.  Correct the student by saying the correct problem and answer, having them repeat the correct problem and the answer three times, then back up three problems and move forward again.

Diagnosis.  If, after practicing with you, the student does much better on the one minute timing and passes or nearly passes (this is what I usually found) then you know the problem is poor practicing procedures.  If your work with the student makes no difference (they don’t do better on the one-minute timing) and they seem equally slow on all the problems then it is not practicing procedures at fault.  Try #2

Solution:  Monitor your students closely during oral practice to see if they are all following the correct practice procedures.  If you have quite a few students who aren’t practicing well you may need to re-teach your class how to practice.  [Note: Even if they know how to do it but aren’t doing it right, treat it as if they just don’t know how to to do it correctly.]  Stop them and re-do the modeling of how to practice and how to correct for several days before allowing them to practice again.  If your students haven’t been practicing the right way, they won’t be passing frequently, and they will be unmotivated.  You have to get them practicing the right way so they can be successful and so they can be motivated by their success.

Solution:  If you have poor practicing with only a handful of students you might assign them to more responsible partners and explain to them that they need to practice correctly. During oral practice monitor them more carefully the next few days to be sure they are practicing better and passing more frequently.

(#2) Need to review test problems also.  The problems practiced around the outside are the recently introduced facts.  The problems inside the test box are an even mix of all the problems taught so far.  If there has been a break for a week or more, or if the student has been stuck for a couple of weeks, the student may have forgotten some of the facts from earlier and may need a review of the test problems.

Diagnosis.  Have the student practice orally on the test problems inside the box with you.  If the student hesitates on several of the problems that aren’t on the outside practice, then the student needs to review the test items.

Solution. If you have this problem with quite a few students (for example after Christmas break) then have the whole class do this solution.  For the next three or four days, after practicing around the outside, instead of taking the 1 minute test in writing, have students practice the test problems orally with each other.  Use the same procedures as during the practice—two minutes with answer keys for the test, saying the problem and the answer aloud, correction procedures for hesitations, correct by saying the problem and answer three times, then going back—then switch roles.   Do this for three or four days and then give the one-minute test.   Just about everyone should pass at that point.

Solution.  If you have this problem with a handful of students, find a time during the day for them to practice the test problems orally in pairs.  If the practice occurs before doing Rocket Math so much the better, but it will work if done after as well.  They should keep doing this until they pass a couple of levels within six days.

If neither the first or the second solutions seem to work, write to me again and I’ll give you some more ideas.

How should students practice math facts?

Students should practice with a checker holding an answer key. 

  • One student has a copy of the PRACTICE answer key and functions as the checker while the practicing student has the problems without answers. The practicing student reads the problems aloud and says the answers aloud. It is critical for students to say the problems aloud before saying the answer so the whole thing, problem and answer, are memorized together. We want students to have said the whole problem and answer together so often that when they say the problem to themselves the answer pops into mind, unbidden. (Unbidden? Yes, unbidden. I just kinda like that word and since I am writing this, I get to use it.)
  • A master PRACTICE answer key is provided—be sure to copy it on a distinctive color of paper (yellow in the picture) to assist in classroom monitoring. The distinctive color is important for teacher monitoring. If you are ready to begin testing and you see yellow paper on a desk, you know someone has answers in front of him/her. When you make these distinctively colored (there, I said it again) copies, be sure to copy all of the answer sheets needed for a given operation and staple them into a booklet format…one for each student who is working in that operation. For some reason (I actually know the reason) teachers always want to find a way to put the answer keys permanently into the students’ folders. DON’T. Students need to be able to hold these in their hot little hands, outside of their folders. Then answer keys will be the same regardless of the set of facts on which a student is working. So students working on multiplication will have the answers to ALL the practice sets for multiplication. This allows students from different levels to work together without having to hunt up different answer keys.
  • The checker watches the PRACTICE answer key and listens for hesitations or mistakes. If the practicing student hesitates even slightly before saying the answer, the checker should immediately do the correction procedure, explained below. (Let’s stop here. This is critical. Critical, I tell ya. This correcting hesitations thing is sooooo important. I mean really important. You can probably guess why. We need students to be able to say the answer to these problems without missing a beat — not even half a beat. So students must be taught that there is no hesitation allowed. Really.) Of course, if the practicing student makes a mistake, the checker should also do the correction procedure.
  • The correction procedure has three steps:
    1. The checker interrupts and immediately gives the correct answer.
    2. The checker asks the practicing student to repeat the fact and the correct answer at least once and maybe twice or three times. (I recommend three times in a row.)
    3. The checker has the practicing student backup three problems and begin again from there. If there is still any hesitation or an error, the correction procedure is repeated. Here are two scenarios:

Scenario One
Student A: “Five times four is eighteen.”
Checker: “Five time fours is twenty. You say it.”
Student A: “Five times four is twenty. Five times four is twenty. Five times four is twenty.”
Checker: “Yes! Back up three problems.”
Student A: (Goes back three problems and continues on their merry way.)

Scenario Two
Student A: “Five times four is … uhh…twenty.”
Checker “Five times four is twenty. You say it.”
Student A: “Five times four is twenty. Five times four is twenty. Five times four is twenty.”
Checker: “Yes! Back up three problems.”
Student A: (Goes back three problems and continues on their merry [there is a lot of merriment
in this program] way.)


  • This correction procedure is the key to two important aspects of practice. One, it ensures that students are reminded of the correct answers so they can retrieve them from memory rather than having to figure them out. (We know they can do that, but they will never develop fluency if they continue to have to “figure out” facts.) Two, this correction procedure focuses extra practice on any facts that are still weak.
  • Please Note: If a hesitation or error is made on one of the first three problems on the sheet, the checker should still have the student back up three problems. This should not be a problem because the practice problems go in a never-ending circle around the outside of the sheet. Aha…the purpose for the circle reveals itself!
  • Each student practices a minimum of two minutes. The teacher is timing this practice with a stopwatch…no, for real, time it! After a couple of weeks of good “on-task” behavior you can “reluctantly” allow more time, say two and a half minutes. Later, if students stay on task you can allow them up to about three minutes each. Make ‘em beg! If you play your cards right (be dramatic), you can get your students to beg you for more time to practice their math facts. I kid you not. I’ve seen it all over the country…really!
  • After the first student practices, students switch roles and the second student practices for the same amount of time. It is more important to keep to a set amount of time than for students to all finish once around. It is not necessary for students to be on the same set or even on the same operation, as long as answer keys are provided for all checkers. If students have the answer packet that goes with the operation they are practicing and their partner is on a different operation, they simply hand their answer packet to their partner to use for checking. I know what you are thinking. Yes, I realize that “simply handing” something between students is often fraught with danger. I was a teacher too. All of the parts of the practice procedure will need to be practiced with close teacher monitoring several (hundreds of) times prior to beginning the program. Not really “hundreds,” but if you want this to go smoothly, as with anything in your classroom, you will need to TEACH and PRACTICE the procedural component of this program to near mastery. Keep reading. I will tell you HOW to do this practice. (This is VERY directive.)
  • The practicing student should say both the problem and the answer every time. This is important because we all remember in verbal chains.
  • Saying the facts in a consistent direction helps learn the reverses such as 3 + 6 = 9 and 6 + 3 = 9.
  • To help kids with A.D.D. (and their friends) the teacher can make practice into a sprint-like task. “If you can finish once around the outside, start a new lap at the top and raise your fist in celebration!” Recognize these students as they start a second “lap” either with their name on the board or oral recognition — “Jeremy’s the first one to get to his second lap. Oh, look at that, Mary and Susie are both on their second laps. Stop everyone, time is up. Now switch roles and raise your hand when you and your partner are ready to begin practicing.”

Can’t I copy answer keys for half the students?

Shane asks: After the answer keys are copied onto colored paper, can’t I just make enough copies of answers for half the students? It seems that they will only be using the answer keys while working with a partner and therefore will only need 1 set of keys per pair.

 

Dr. Don answers: Lots of people think this, but here are four examples of issues that make it preferable for each student to have their own answer key, and yes, it should be on colored paper.

1) When students are absent you must pair two students but under the one-answer-key-per-pair both students could be “without” answer keys!  In both cases, their partner has the answer key and that folder is in their desk.

2) When someone comes in to help or volunteer, you want Johnny to practice Rocket Math with that person–but Johnny doesn’t have an answer key–his partner does. So Johnny has to go searching for an answer key.  If Johnny had his own answer key he could just get out his Rocket Math folder and go to work.

3)  The Title 1 or Special Ed teacher or instructional assistant might offer to do extra practice with a student, the student takes his/her folder down to the a place to practice–but doesn’t have an answer key.

4) Alex moves up to division, but his partner doesn’t have an answer key to division–another example where Alex needs his own answer key.

Can a few minutes of fact practice each day be harmful?

Practice is not harmful as long as students are successful.

The best way to practice math facts is by saying them aloud to a person who can tell you if you’re wrong or hesitant in your responses.  If you are wrong or hesitant, you should practice on that particular fact a bit more until you know it well. This is an effective way to learn anything, including math facts.  It is especially valuable if students are given a limited set of facts to learn at each step so they develop and maintain mastery as they learn.  If practice is set up carefully, and students get positive feedback showing they are learning and making progress, it is enjoyable and motivating for students.  This is the essence of Rocket Math.  How in the world could this be harmful?    Only by doing it wrong, and doing it wrong specifically in a way that students are not successful.

If teachers skip the practice and learning part and just give the tests–that would be harmful.  Students won’t get a chance to learn and will experience failure.  The daily oral practice is the heart of Rocket Math–it can’t be skipped!

Daily tests in Rocket Math determine if a student has learned the set of facts he or she is working on, and learned them well enough to have a new set to be added to memory.  If students are not proficient in the facts they are working on now (proficient means being able to say a fact and its answer without any hesitation) then they will become overwhelmed with the memorization and will not be successful.  So it is critical that teachers are certain (based on the daily tests) that students can answer all the facts up to that point without hesitation.  Otherwise they will not be successful and it won’t be enjoyable.

Goals for those daily tests must be based on how quickly students can write.  Slow writers must have lower goals. Fast writers must have higher goals.  Every student’s goal should be “as fast as her fingers can carry her” and no faster.  Arbitrarily raising those goals (expecting faster performance than possible) or arbitrarily lowering those goals (moving students on to the next set before they have mastered the previous set) will cause students to be unsuccessful.

If the checker does not listen and correct errors or hesitations, a student can practice incorrectly and learn the wrong fact.  They can also fail to get the tiny bit of extra practice they need on a fact that they can’t quickly remember yet.  If practice does not proceed as it should, then students will not learn as they should.  Lack of success will make facts practice onerous or counterproductive.  The teacher has to monitor students practicing carefully to make sure they are doing it the right way to be successful.

Rocket Math has very explicit instructions here and answers to FAQs here.  I have a 3 hour training DVD here.  I am available at don@rocketmath.com  to answer questions.  Practicing math facts ten minutes a day is NOT harmful, if we do it in the way that students are successful.

Facts practice: does it belong in middle school math?

It sure does, if you’re seeing this happen in your class!

Most middle school math teachers confide to me that their classrooms are negatively impacted by the number of students who stop to count out facts on their fingers.  Their issue was always what to do during facts practice with the other students who do know their facts.  It has taken a couple of years but I have put together a package of pre-algebra skills that are worth middle school students’ time practicing which are available in the Universal Subscription. Because the routine of Rocket Math is the same whether the students are practicing basic multiplication facts or learning equivalent fractions you’ll be able to manage all these different levels during the same ten-minute session.

Teachers know it is imperative that finger-counting middle schoolers get practice learning their facts.  Rocket Math is an excellent way to do that.  They will develop fluency and automaticity with the basic facts in an operation in a semester and from then on your lessons will be much easier.  Not only that, but a much higher proportion of the students will be finishing assignments.  There is a “Placement Probe” that can identify students who know their facts in about one minute. The students who know the basic facts of multiplication and division can be placed into the pre-algebra practice programs.

Factors Answers AFACTORS. Students probably ought to begin with the Factors program. What are the factors of 24? Answer: 1 and 24, 2 and 12, 3 and 8, 4 and 6. This is what students learn by memory from doing this program. Students practice with a partner, take a daily one minute timing, fill in a Rocket Chart, just like regular Rocket Math. Students learn all the factors for these numbers in this sequence: 12, 36, 24, 48, 18, 32, 16, 64, 10, 40, 20, 72, 8, 25, 50, 6, 21, 30, 60, 15, 45, and 100.

 

 

Fraction Number Line GEQUIVALENT FRACTIONS.  Students need to know that six-eighths is equivalent to three-fourths and that four-twelfths is equivalent to one-third.  While they can calculate these, it is very helpful to know the most common equivalent fractions by memory.  One of the most common problems students have in fractions is not “reducing their answers to simplest form.”  Equivalent fractions will help students commit 100 common equivalent fractions to memory.  Each set (A through Z) has four fractions which are displayed on a fraction number line.  Students frequently learn fractions equivalent to one,such as ten-tenths, as well as fractions that can’t be reduced, for example three-fourths is equivalent to three-fourths.  Using the fraction number line will help with student understanding of why those fractions are equivalent.

Integers ArrowsINTEGERS (Adding and subtracting positive and negative numbers).  Integers displays problems on a vertical number line and then teaches students two rules about how to solve problems that add or subtract positive and negative numbers.

Rule 1: Go up when you add a positive number OR subtract a negative number.
Rule 2: Go down when you subtract a positive number OR add a negative number.

Students gradually learn several variations of all four types of problems.  They practice with the number line on each page and then have a chance to build fluency on the top half of the page as they work with their partner.  You will probably not be surprised that there is a one-minute test on each set.  The goals are slightly different than before.  Students are to be 100% accurate and to complete at least 80% of their rate at answering simple addition and subtraction problems.

10s, 11s, 12s Multiplication and 10s, 11s, 12s Division facts are also available in the Universal Subscription.  If you have students who think they know the basic facts, but need review, putting them into either of these programs will review the 1s through 9s facts, teach them new ones and allow them to save face.

Among these five programs there are good things for ALL middle school math students to learn, even the more advanced students.  This will enable a math teacher to devote ten minutes a day to fact practice without holding anyone back.  Everyone will have something meaningful to practice during that time.  I think this could be a huge step forward for a lot of middle school MATH classrooms.

 

Why do multiplication facts have priority after 3rd grade?

Because older students CANNOT succeed in math without multiplication facts.

Am I sure? Yes, I’m sure. “But,” you say, “my students are still counting addition and subtraction on their fingers.”

I know. And I am still sure—fourth grade and up—multiplication. Why? Once children are in fourth grade it is critical that teachers make sure they memorize multiplication facts—primarily because you can’t be sure of how much help they will get later to learn the math facts. Sadly, your students may only learn one operation to fluency. If so, multiplication facts have priority over addition and subtraction. Besides complex multiplication and division, the multiplication facts are needed for success in fractions and ratios. Students have to immediately see the relationships between numbers in order to understand topics like equivalent fractions, reducing fractions, combining unlike fractions, as well as ratios. Let’s be honest here…those are the things that state tests LOVE to ask about. Not to mention, these are the pre-algebra skills students need to be successful in algebra and the rest of math.

If you have the students for long enough (at least one year) you may find that they finish and have mastered both multiplication and division facts. Then you can go back and have them learn addition and subtraction facts as well.

Don’t get me wrong — I know that addition and subtraction facts are VERY IMPORTANT — it’s just that multiplication is MORE IMPORTANT.